Fixational eye movements in normal and pathological vision.
نویسنده
چکیده
Most of our visual experience is driven by the eye movements we produce while we fixate our gaze. In a sense, our visual system thus has a built-in contradiction: when we direct our gaze at an object of interest, our eyes are never still. Therefore the perception, physiology, and computational modeling of fixational eye movements is critical to our understanding of vision in general, and also to the understanding of the neural computations that work to overcome neural adaptation in normal subjects as well as in clinical patients. Moreover, because we are not aware of our fixational eye movements, they can also help us understand the underpinnings of visual awareness. Research in the field of fixational eye movements faded in importance for several decades during the late 20th century. However, new electrophysiological and psychophysical data have now rejuvenated the field. The last decade has brought significant advances to our understanding of the neuronal and perceptual effects of fixational eye movements, with crucial implications for neural coding, visual awareness, and perception in normal and pathological vision. This chapter will review the type of neural activity generated by fixational eye movements at different levels in the visual system, as well as the importance of fixational eye movements for visual perception in normal vision and in visual disease. Special attention will be given to microsaccades, the fastest and largest type of fixational eye movement.
منابع مشابه
Non-linear retinal processing supports invariance during fixational eye movements
Fixational eye movements can rapidly shift the retinal image, but typically remain unnoticed. We identify and simulate a model mechanism for the suppression of erroneous motion signals under fixational eye movements. This mechanism exploits the non-linearities common to many classes of large retinal ganglion cells in the mammalian retina, and negates the need for extra-retinal signals or explic...
متن کاملControl and Functions of Fixational Eye Movements.
Humans and other species explore a visual scene by rapidly shifting their gaze 2-3 times every second. Although the eyes may appear immobile in the brief intervals in between saccades, microscopic (fixational) eye movements are always present, even when attending to a single point. These movements occur during the very periods in which visual information is acquired and processed and their func...
متن کاملFixational eye movements and binocular vision
During attempted visual fixation, small involuntary eye movements-called fixational eye movements-continuously change of our gaze's position. Disagreement between the left and right eye positions during such motions can produce diplopia (double vision). Thus, the ability to properly coordinate the two eyes during gaze fixation is critical for stable perception. For the last 50 years, researcher...
متن کاملFixational eye movements across vertebrates: comparative dynamics, physiology, and perception.
During visual fixation, human eyes are never still. Instead, they constantly produce involuntary "fixational eye movements." Fixational eye movements overcome neural adaptation and prevent visual fading: thus they are an important tool to understand how the brain makes the environment visible. The last decade has seen a growing interest in the analysis of fixational eye movements in humans and ...
متن کاملCharacteristics of fixational eye movements in amblyopia: Limitations on fixation stability and acuity?
Persons with amblyopia, especially those with strabismus, are known to exhibit abnormal fixational eye movements. In this paper, we compared six characteristics of fixational eye movements among normal control eyes (n=16), the non-amblyopic fellow eyes and the amblyopic eyes of anisometropic (n=14) and strabismic amblyopes (n=14). These characteristics include the frequency, magnitude of landin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in brain research
دوره 154 شماره
صفحات -
تاریخ انتشار 2006